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Malleable Caches: Final Report

Srini Devadas and Larry Rudolph
Laboratory for Computer Science

MIT
Cambridge, MA 02139

1 Introduction

Managing the memory hierarchy is important for providing good performance of data intensive
computation. We have explored several techniques for managing the cache in a microprocessor.
In this report, we look at column caching, cache partitioning, and cache compression techniques
especially in regards to the DIS benchmarks.

2 Cache Partitioning

We present a low-overhead, on-line memory monitoring scheme that is more useful than simple
cache hit counters. The scheme becomes increasingly important as more and more processes and
threads share various memory resources in computers using SMP [28, 33, 34], Multiprocessor-on-
a-chip [29], or SMT [47, 36, 30] architectures.

Regardless of whether a single process executes on the machine at a given point in time, or
multiple processes execute simultaneously, modern systems arespace-sharedand time-shared.
Since multiple processes or threads1can interfere in memory or caches, the performance of a pro-
cess can depend on the actions of other processes. Despite the importance of optimizing memory
performance for multi-tasking situations, most published research focuses only on improving the
performance of a single process.

Optimizing memory usage between multiple processes is virtually impossible without run-
time information. The processes that share resources in the memory hierarchy are only known at
run-time, and the memory reference characteristic of each process, heavily depends on inputs to
the process and the phase of execution. But, hardware cache monitors in commercial, general-
purpose microprocessors (e.g., [48]) only count the total number of misses which is useful for pure
performance monitoring of a single application.

1We use the term “process” in the paper to potentially include any execution context, such as threads. Too bad
there is no consistent use of these terms.
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Figure 1: (a) Miss-rate curve for process� (gcc). (b) Miss-rate curve for process� (swim). (c)
Miss-rate curve for process� (bzip2).

To determine how many and which jobs should execute simultaneously,   it  is  often necessary
to know how an application would perform for various cache sizes. Cache “footprint” for each
application usually does not help since footprints for several applications executing simultaneously
are likely to exceed the cache size for small caches. For example, consider the miss-rate curves
for three different processes from SPEC CPU2000 [32] shown in Figure 1. For a cache of size
50,� and� could execute together but� should execute alone. Miss-rates as a function of cache
size give much more information than a single footprint number and this information can be very
relevant in scheduling,   and partitioning cache among processes.

The memory monitoring scheme presented in this paper requires small modifications to the
TLB, L1, and L2 cache controllers and the addition of a set of counters. Despite the simplicity
of the hardware, these counters provide isolated miss-rates of each running process as a function
of cache size under the standard LRU replacement policy2. Moreover, the monitoring information
can be used to dynamically reflect changes in process’ behavior by properly weighting counters’
values.

In our scheduling and partitioning algorithms (Section 2.3, 3), we use marginal gains rather
than miss-rate curves. The marginal gain of process�, namely�����, is defined as the derivative of

2Previous approaches only produce a single number corresponding to one memory size.
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the miss-rate curve3 ����� properly weighted by the number of references for a processes (��	�);

���
� � ����
 � ��� ���
�� � ��	�� (1)

Therefore, we directly monitor marginal gains for each process rather than miss-rate curves. Us-
ing marginal gains, we can derive schedules and cache allocations for jobs to improve memory
performance. If needed, miss-rate curves can be computed recursively from marginal gains.

We show how the information from the memory monitors is analyzed using an analytical frame-
work, which models the effects of memory interference amongst simultaneously-executing pro-
cesses as well as time-sharing effects (Section 2.5). The counter values alone only estimate the
effects of reducing cache space for each process. When used in conjunction with the analytical
model, they can provide an accurate estimate of the overall miss-rate of a set of processes time-
sharing and space-sharing a cache. The overall miss-rate provided by the model can drive more
powerful scheduling and partitioning algorithms.

2.1 Example 1 – Stressmarks

2.2 Marginal-Gain Counters

Memory monitoring schemes should provide information to estimate the performance of a given
level of the memory hierarchy under different configurations or allocations to be useful when
optimizing that level’s performance. This section proposes an architectural mechanism using a set
of counters to obtain themarginal-gainin cache hits for different sizes of the cache for a process or
set of processes. Such information is used by memory-aware scheduling and partitioning schemes.

For fully-associative caches, the counters simply indicate the marginal gains, but for set-
associative caches, the counters are mapped to marginal gains for an equivalent sized fully-associative
cache. It is much easier to work with fully-associative caches and experimental results show that
this works well in practice. For example, the contention between two processes sharing a fully-
associative cache is a good approximation to the contention between the two processes sharing a
set-associative cache.

2.2.1 Implementation of Counters

We want to obtain marginal gains for a process for various cache sizes without actually changing
the cache configuration. In cache simulations, it has been shown that different cache sizes can be
simulated in a single pass [41]. We emulate this technique in hardware to obtain multiple marginal
gains while executing a process with a fixed cache configuration.

In any situation where the exact LRU ordering of each cache block is known, computing the
marginal gain���� simply follows from the following set of counters:

3the miss-rate of process� using� cache blocks when the process is isolated without competing processes.
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Counters for a Fully Associative
Cache: There is one counter for each
block in the cache;��������� records
the number of hits in the most recently
used block, and��������� is the num-
ber of hits in the second most recently
used block, etc. When there is a refer-
ence to the��� most recently used block,
then ��������� is incremented. Note
that the item referenced then becomes
the most recently used block, so that
a subsequent reference to that item is
likely to increment a different counter.

To compute the marginal gain curve for each process, a set of counters is maintained for each
process. In a uniprocessor system, the counters are saved/restored during context switches, and
when processes execute in parallel, multiple sets of counters are maintained in hardware. We thus
subscript the counters with their associated process id. The marginal gain����� is obtained directly
by counting the number of hits in the��� most recently usedblock (���������). The counters plus
an additional one,��	�, that records the total number of cache references for process�, are used to
convert marginal gains to miss-rates for analytical models (Section 2.5).

2.2.2 Main Memory

Main memory can be viewed as a fully-associative cache for which on-line marginal gain counters
could be useful. That is, we want to know the marginal gain to a process as a function of physical
memory size. For main memory, there are two different types of accesses that must be considered:
a TLB hit or a TLB miss. Collecting marginal gain information from activity associated with a
TLB hit is important for processes that have small footprints and requires hardware counters in the
TLB. Collecting this information when there is a TLB miss is important for processes with larger
footprints and requires mostly software support.

Assuming the TLB is a fully-associative cache with LRU replacement, the hardware counters
defined above can be used to compute marginal gains for the���� most recently used pages,
where���� is the number of TLB entries, Figure 2. The counters are only increased if a memory
access misses on both L1 and L2 caches. Therefore, counting accesses to main memory does not
introduce additional delay on any critical path. If the TLB is set-associative we use the technique
described in the next subsection.

On a TLB miss, a memory access is serviced by either a hardware or software TLB miss han-
dler. Ideally, we want to maintain the LRU ordering for each page and count hits per page. How-
ever, the overhead of per-page counting is too high and experimentation shows that only dozens of
data points are needed for performance optimization such as scheduling and partitioning. There-
fore, the entire physical memory space can be divided into a few dozen groups and we count the

4
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Figure 2: The implementation of memory monitors for main memory.

marginal gain per group. It is easy for software to maintain the LRU information. All of a process’
pages in physical memory form a linked list in LRU ordering. When the page is accessed, its group
counter is updated, its position on the linked list is moved to the front, and all the pages on group
boundaries update their group. Machines that handle TLB misses in hardware need only insert the
referenced page number into a buffer and software can do the necessary updates to the linked list
on subsequent context switches. The overhead is minor requiring only several bytes for each page
whose size is of the order of 4-KB, and tens of counters to compute marginal gains.

2.2.3 Set-Associative Caches

In set-associative caches, LRU ordering is kept only within each set. (We call this LRU ordering
within a set asway LRU ordering.) Although we can only estimate marginal gains of having each
way, not each cache block, it turns out to often to be good enough for scheduling and partitioning
if the cache has reasonably high associativity.

Way-Counters for a Set-Associative
Cache: There is one counter for each
way of the cache. A hit in the cache
to the MRU block of some set up-
dates���������. A hit in the cache
to the LRU block of some set updates
���������, assuming�-way associa-
tivity. There is an additional counter,
��	 , recording all the accesses to the
cache.

Figure 3 (a) illustrates the implementation of this hardware counters for�-way associative caches.
It is also possible to have counters associated with each set of a cache.
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Set-Counters for a Set-Associative
Cache: There is one counter for each
set of the cache. LRU information for
all sets is maintained. A hit to any block
within the MRU set updates���������.
A hit to any block within the LRU set
updates���������, assuming� sets in
the cache. There is an additional counter,
��	 , recording all the accesses to the
cache.

Which Way?

DataTagVLRUDataTagVLRU

Counter(1)

Counter(2)

HIT?
Ref

Way LRU of Set 0
Way LRU of Set1

(a)

(b)

Way LRU of Hit Block

Which Way?

Group
1

Group
0

DataTagVLRUDataTagVLRU

HIT?
Ref

Way LRU of Set 0 Way LRU of Set1

Way LRU of Hit Block

Set LRU

Set LRU Ordering

Counter(1)

Counter(4)

Figure 3: The implementation of memory monitors for�-way associative caches. On a cache
access, the LRU information is read for the accessed set. Then the counter is incremented based
on this LRU information if the access hits on the cache. The reference counter is increased on
every access. (a) The implementation that only uses the LRU information within a set. (b) The
implementation that uses both the way LRU information and the set LRU information.

To obtain the most detailed information, we can combine bothway-countersandset-counters.
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There are� � � counters, one for each cache block. A hit to a block within the��� MRU set and
the��� MRU way updates��������� ��. We refer to these asDS-counters.

In practice, we do not need to maintain LRU ordering on a per cache set basis. Since there
could be thousands of cache sets, the sets are divided into several groups and the LRU ordering is
maintained for the groups. Figure 3 (b) illustrates the implementation of DS-counters with two set
groups.

2.2.4 Computing fully-associative marginal
gain from set-associative counters

The marginal gain for a fully-associative cache can be approximated from the way-counters as
follows:

��������
� �
����

�����������

����� (2)

where� is the number of sets.
With a minimum monitoring granularity of away, high-associativity is essential for obtaining

enough information for performance optimization; our experiments show that�-way associative
caches can provide enough information for partitioning. Content-addressable-memory (CAM)
tags are attractive for low-power processors [49] and they have higher associativity; the SA-1100
StrongARM processor [35] contains a 32-way associative cache.

If the cache has low associativity, the information from the way LRU ordering alone is often
not enough for good performance optimization. For example, consider a�-way associative cache
shown in Figure 4 (a). For cache partitioning, the algorithm would conclude that the process needs
a half of the cache to achieve a low miss-rate from two given points, even though the process only
needs one tenth of the cache space.

To obtain finer-grained information, we use eitherWay-Counterwith Set-Countersor DS-
Countersfor low-associative caches. For example, Figure 4 (b) shows the miss-rate curve obtained
using DS-Counters. As shown in the figure, we can obtain much more detailed information if we
keep the set LRU ordering for� or �� groups. Way-Counters with Set-Counters, which provide
� � � counter values, can also be used instead of DS-Counters. In this case, the value in each set-
counter is distributed over the ways (� software counters) based on the values in the way-counters
to generate� � � values.

There are several strategies for converting the��� counter values into full-associative marginal
gain information. In Figure 4 (b), we usedsortingas a conversion method. First,� ��	
�� counter
values are obtained from the hardware counters, where�	
�� represents the number of set groups.
Then, these counters are sorted in decreasing order and assigned to marginal gains. This conversion
is based on the assumption that the marginal gain is monotonically decreasing function of cache
size. We are also investigating other conversion methods; column-major conversion, binomial
probability conversion, etc.

Since characteristics of processes change dynamically, the estimation of����� should reflect
the changes. But we also wish to maintain some history of the memory reference characteristics
of a process, so we can use it to make decisions. We can achieve both objectives, by giving more
weight to the counter value measured in more recent time periods.

7
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Figure 4: The estimated miss-rate curves using the set-associative cache monitor. The cache is
32-KB �-way associative, and the benchmark isvpr from SPEC CPU2000. The ideal curve
represents the case when you know the LRU ordering of all cache blocks. (a) Approximation only
using the way LRU information. (b) Approximation using both the way LRU information and the
set LRU information.

When a process begins running for the first time, all its counter values are initialized to zero. At
the beginning of each time quantum that process� runs, the operating system multiplies������ ��
�
for all 
 and��	� by Æ � ��	. As a result, the effect of hits in the previous time slice exponentially
decays, but we maintain some history.

2.3 Memory-Aware Scheduling

When a scheduler has the freedom to select which processes execute in parallel, knowing the mem-
ory requirements of each process can help produce a better schedule. In particular, this section
demonstrates how the marginal gain counters can be used to produce a memory-aware schedule.
First, we begin with the problem definition and assumptions. Then, a scheduling algorithm based
on marginal gains of each process is briefly explained. Finally, we validate our approach by simu-
lations for main memory.
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Figure 5: (a) A shared memory multiprocessor system with� processors. (b) Space-sharing and
Time-sharing in multiprocessor system.

2.3.1 Scheduling Problem

We consider a system where� identical processors share the memory and� processes are ready to
execute, see Figure 5 (a). The system can be a shared-memory multiprocessor system where multi-
ple processors share the main memory, or it can be a chip multiprocessor system where processors
on a single chip share the L2 cache.

Since there are� processors, a maximum of� processes can execute at the same time. To
schedule more than� processes, the system is time-shared. We will assume processes are single-
threaded, and all� processors context switch at the same time as would be done in gang scheduling
[31]. These assumptions are not central to our approach, rather for the sake of brevity, we have
focused on a basic scheduling scenario. There may or may not be constraints in scheduling the
ready processes. Constraints will merely affect the search for feasible schedules.

A schedule is a mapping of processes to matrix elements, where element���� �� represents the
process scheduled on processor� for time slice�, see Figure 5 (b). A matrix with� non-empty
rows indicates that� time slices are needed to schedule all� processes. In our problem,� � ��

�
�.

Our problem is to find the optimal scheduling that minimizes processor idle time due to mem-
ory misses. The number of memory misses depends on both contention amongst processes in the
same time slice and contention amongst different time slices. In this section, we only consider the
contention within the time slice. Considering contention amongst time slices is briefly discussed
in Section 2.5. For a more general memory-aware scheduling strategy, see [44].

2.3.2 Scheduling Algorithm

For many applications, the miss rate curve as a function of memory size has a knee (See Figure 1).
That is, the miss rate quickly drops and then levels off. To minimize the number of misses, we
want to schedule processes so that each process can use more cache space than the ordinate of its
knee.

The relative footprint for process� is defined as the number of memory blocks allocated to
the process when the memory with� � � blocks is partitioned among all processes such that the
marginal gain for all processes is the same.� represents the number of blocks in the memory, and
� �� represents the amount of available memory in� time slices. Effectively, the relative footprint
of a process represents the optimal amount of memory space for that process when all processes

9



Name Description FP (MB)

bzip2 Compression 6.2
gcc C Compiler 22.3
gzip Compression 76.2
mcf Combinatorial Optimization 9.9

vortex Object-oriented Database 83.0
vpr FPGA Placement and Routing 1.6

Table 1: The descriptions and Footprints of benchmarks used for the simulations. All benchmarks
are from SPEC CPU2000 [32].

execute simultaneously sharing the total memory resource over� time slices4. Intuitively, relative
footprints corresponds to a knee of the miss-rate curve for a process.

We use a simple� � � step greedy algorithm to compute relative footprints. First, no memory
block is allocated to any process. Then, for each block, we allocate the block to the process that
obtains the maximum marginal gain for an additional block. After allocating all� � � blocks to
processes, the allocation for each process is the relative footprint of the process. We limit the
number of blocks assigned to each process to be less than or equal to�.

Once the relative footprints are computed, assigning processes to time slices is straightforward.
In a greedy manner, the unscheduled process with the largest relative footprint is assigned to a time
slice with the smallest total relative footprint at the time. We limit the number of processes for each
time slice to be� .

2.3.3 Experimental Results

A trace-driven simulator demonstrates the importance of memory-aware scheduling and the effec-
tiveness of our memory monitoring scheme. Consider scheduling six processes, randomly selected
from SPEC CPU2000 benchmark suite [32] on the system with three processors sharing the main
memory. The benchmark processes have various footprint sizes (See Table 1), that is, the memory
size that a benchmark requires to achieve the minimum miss-rate. Processors are assumed to have
4-way 16-KB L1 instruction and data caches and a 8-way 256-KB L2 cache. The simulations
concentrate on the main memory varying over a range of 8 MB to 256 MB with 4-KB pages.

All possible schedules are simulated. For various memory sizes, we compare the average miss-
rate of all possible schedules with the miss-rates of the worst schedule, the best schedule, and the
schedule by our algorithm. The simulation results are summarized in Table 2 and Figure 6. In the
table, a corresponding schedule for each case is also shown except for the 128-MB and 256-MB
cases where many schedules result in the same miss-rate. A schedule is represented by two sets of
letters. Each set represents a time slice, and each letter represents a process: A-bzip2, B-gcc,
C-gzip, D-mcf, E-vortex, F-vpr. In the figure, the miss-rates are normalized to the average
miss-rate.

The results demonstrate that process scheduling can have a significant effect on the memory
4Stone, Turek, and Wolf [40] proved the algorithm results in the optimal partition assuming that marginal gains

monotonically decrease as allocated memory increases.
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Memory Average of Worst Case Best Case Algorithm
Size (MB) All Cases

8 Miss-Rate(%) 1.379 2.506 1.019 1.022
Schedule (ADE,BCF) (ACD,BEF) (ACE,BDF)

16 Miss-Rate(%) 0.471 0.701 0.333 0.347
Schedule (ADE,BCF) (ADF,BCE) (ACD,BEF)

32 Miss-Rate(%) 0.187 0.245 0.148 0.157
Schedule (ADE,BCF) (ACD,BEF) (ABD,CEF)

64 Miss-Rate(%) 0.072 0.085 0.063 0.066
Schedule (ABF,CDE) (ACD,BEF) (ACF,BDE)

128 Miss-Rate(%) 0.037 0.052 0.029 0.029
Schedule (ABF,CDE) (ACD,BEF) (ACD,BEF)

256 Miss-Rate(%) 0.030 0.032 0.029 0.029
Schedule (ABF,CDE) (ACD,BEF) (ACD,BEF)

Table 2: The performance of the memory-aware scheduling algorithm. A schedule is represented
by two sets of letters. Each set represents a time slice, and each letter represents a process: A-
bzip2, B-gcc, C-gzip, D-mcf, E-vortex, F-vpr. For some cases multiple schedules result
in the same miss-rate.
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performance, and thus the overall system performance. For 16-MB memory, the best case miss-
rate is about 30% better than the average case, and about 53% better than the worst case. Given
the very large penalty for a page fault, performance is significantly improved due to this large
reduction in miss-rate. As the memory size increases, scheduling becomes less important since the
entire workload fits into the memory. However, note that smart scheduling can still improve the
miss-rate by about 10% over the worst case even for 256-MB memory that is larger than the total
footprint size from Table 1. This happens because the LRU policy does not allocate the memory
properly.

The results also illustrate that our scheduling algorithm can effectively find a good schedule,
which results in a low miss-rate. In fact, the algorithm found the optimal schedule when the
memory is larger than 64-MB. Even for small memory, the schedule found by the algorithm shows
a miss-rate very close to the optimal case.

Finally, the results demonstrate the advantage of having marginal gain information for each
process rather than one value of footprint size. If we schedule processes based on the footprint
size, executinggcc, gzip andvpr together and the others in the next time slice seems to be
natural since it balances the total footprint size for each time slice. However, this schedule is
actually theworst schedule for memory smaller than 128-MB, and results in a miss-rate that is
over 50% worse than the optimal schedule.

Memory traces used in this experiment have footprints smaller than 100 MB. As a result, the
scheduling algorithm could not improve the miss-rate for memory which is larger than 256 MB.
However, many applications have very large footprints, often larger than main memory. For these
applications, the memory size where scheduling matters should scale up.

2.4 Cache Partitioning

Just like knowing memory requirements can help a scheduler, it can also be used to decide the
best way to dynamically partition the cache among simultaneous processes. A partitioned cache
explicitly allocates cache space to particular processes. In a partitioned cache, if space is allocated
to one process, it cannot be used to satisfy cache misses by other processes. Using trace-driven
simulations, we compare partitioning with normal LRU for set-associative caches.

2.4.1 The Partitioning Scheme

The standard LRU replacement policy treats all cache blocks in the same way. For multi-tasking
situations, this can often result in poor allocation of cache space among processes. When multiple
processes run simultaneously and share the cache as in simultaneous multithreading and chip mul-
tiprocessor systems, the LRU policy blindly allocates more cache space to processes that generate
more misses even though other processes may benefit more from increased cache space.

We solve this problem by explicitly allocating cache space to each process. The standard LRU
policy still manages cache space within a process, but not among processes. Each process gets a
certain amount of cache space allocated explicitly. Then, the replacement unit decides which block
within a set will be evicted based on how many blocks a process has in the cache and how many
blocks are allocated to the process.

The overall flow of the partitioning scheme can be viewed as a set of four modules: on-line
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Figure 7: The implementation of on-line cache partitioning.

cache monitor, OS processor scheduler, partition module, and cache replacement unit (Figure 17).
The scheduler provides the partition module with the set of executing processes that shares the
cache at the same time. Then, the partition module uses this scheduling information and the
marginal gain information from the on-line cache monitor to decide a cache partition; the mod-
ule uses a greedy algorithm to allocate each cache block to a process that obtains the maximum
marginal gain by having one additional block. Finally, the replacement unit maps these partitions
to the appropriate parts of the cache. Since the characteristics of processes change dynamically,
the partition is re-evaluated after every time slice. For details on the partitioning algorithm, see
[43].

2.4.2 Experimental Results

This section presents quantitative results using our cache allocation scheme. The simulations con-
centrate on chip multiprocessor systems where processors (either 2 or 4) share the same L2 cache.
The shared L2 cache is 8-way set-associative, whose size varies over a range of 256 KB to 4 MB.
Each processor is assumed to have its own L1 instruction and data caches, which are 4-way 16 KB.
Due to large space and long latency to main memory, our scheme is more likely to be useful for
an L2 cache, and so that is the focus of our simulations. We note in passing, that we believe our
approach will work on L1 caches as well if L1 caches are also shared.

Three different sets of benchmarks are simulated, see Table 3. The first set (Mix-1) has two
processes,art andmcf both from SPEC CPU2000. The second set (Mix-2) has three processes,
vpr, bzip2 andiu. Finally, the third set (Mix-3) has four processes, two copies ofart and two
copies ofmcf, each with a different phase of the benchmark.

The simulations compare the overall L2 miss-rate of a standard LRU replacement policy and
the overall L2 miss-rate of a cache managed by our partitioning algorithm. The partition is updated
every two hundred thousand memory references (� � ������), and the counters are multiplied by
Æ � ��	 (cf. Section 2.2.4). Carefully selecting values of� andÆ is likely to give better results.
The hit-rates are averaged over fifty million memory references and shown for various cache sizes
(see Table 4).

The simulation results show that the partitioning can improve the L2 cache miss-rate signif-
icantly: for cache sizes between 1 MB to 2 MB, partitioning improved the miss-rate up to 14%
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Name Process Description

Mix-1 art Image Recognition/Neural Network
mcf Combinatorial Optimization

Mix-2 vpr FPGA Circuit Placement and Routing
bzip2 Compression
iu Image Understanding

Mix-3 art1 Image Recognition/Neural Network
art2
mcf1 Combinatorial Optimization
mcf2

Table 3: The benchmark sets simulated. All but the Image Understanding benchmark are from
SPEC CPU2000 [32]. The Image Understanding is from DIS benchmark suite [38].

Size L1 L2 Part. L2 Abs. Rel.
(MB) %Miss %Miss %Miss %Imprv. %Imprv.

art + mcf
0.2 84.4 84.7 -0.3 -0.4
0.5 82.8 83.6 -0.8 -0.9

1 28.1 73.8 63.1 10.7 14.5
2 50.0 48.9 1.1 2.2
4 23.3 25.0 -1.7 -7.3

vpr + bzip2 + iu
0.2 73.1 77.9 -0.8 -1.1
0.5 72.5 71.8 0.7 1.0

1 4.6 66.5 64.2 2.3 3.5
2 40.4 33.7 6.7 16.6
4 18.7 18.5 0.2 1.1

art1 + mcf1 + art2 + mcf2
0.2 88.0 87.4 0.6 0.7
0.5 85.8 85.7 0.1 0.1

1 28.5 83.1 81.0 2.1 2.5
2 73.4 65.1 8.3 11.3
4 49.5 48.7 0.8 1.6

Table 4: Hit-rate Comparison between the standard LRU and the partitioned LRU.
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relative to the miss-rate from the standard LRU replacement policy. For small caches, such as
256-KB and 512-KB caches, partitioning does not seem to help. We conjecture that the size of the
total workloads is too large compared to the cache size. At the other extreme, partitioning cannot
improve the cache performance if the cache is large enough to hold all the workloads.

The results demonstrate that on-line cache monitoring can be very useful for cache partitioning.
Although the cache monitoring scheme is very simple and has a low implementation overhead, it
can significantly improve the performance for some cases.

2.5 Analytical Models

Although the straightforward use of the marginal gain counters can improve performance, it is
important to know its limitation. This section discusses analytical methods that can model the
effects of memory contention amongst simultaneously-running processes, as well as the effects of
time-sharing, using the information from the memory monitoring scheme. The model estimates the
overall miss-rate when multiple processes execute simultaneously and concurrently. Estimating an
overall miss-rate gives a better evaluation of a schedule or partition. First, a uniprocessor cache
model for time-shared systems is briefly summarized. Then, the model is extended to include the
effects of memory contention amongst simultaneously-running processes. Finally, a few examples
of using the model with the monitoring scheme are shown.

2.5.1 Model for Time-Sharing

The time-sharing model from elsewhere [42] estimates the overall miss-rate for a fully-associative
cache when multiple processes time-share the same cache (memory) on a uniprocessor system.
There are three inputs to the model: (1) the memory size (�) in terms of the number of memory
blocks (pages), (2) job sequences with the length of each process’ time slice (��) in terms of the
number of memory references, and (3) the miss-rate of each process as a function of cache space
(�����). The model assumes that the least recently used (LRU) replacement policy is used, and
there are no shared data structures among processes.

2.5.2 Extension to Space-Sharing

The original model assumes only one process executes at a time. In this subsection, we describe
how the original model can be applied to multiprocessor systems where multiple processes can ex-
ecute simultaneously sharing the memory (cache). We consider the situation where all processors
context switch at the same time. More general cases where each processor can context switch at a
different time can be modeled in a similar manner.

To model both time-sharing and space-sharing, we apply the original model twice. First, the
model is applied to processes in the same time slice and generates a miss-rate curve for a time slice
considering all processes in the time slice as one big process. Then, the estimated miss-rate curves
are processed by the model again to incorporate the effects of time-sharing.

What should be the miss-rate curve for each time slice?Since the model for time-sharing needs
isolatedmiss-rate curves, the miss-rate curve for each time-slice� is defined as the overall miss-
rate of all processes in time slice� when they execute together without context switching using

15



memory of size�. We call this miss-rate curve for a time slice as a combined miss-rate curve
��������������. Next we explain how to obtain the combined miss-rate curves.

The simultaneously executing processes within a time slice can be modeled as time-shared
processes with very short time slices. Therefore, the original model is used to obtain the combined
miss-rate curves by assuming the time slice is��	���

��

��� ��	��� for processor� in time-slice�.
��	�� is the number of memory accesses that processor� makes over time slice�.

Now we have the combined miss-rate curve for each time-slice. The overall miss-rate is esti-
mated by using the original model assuming that only one process executes for a time slice whose
miss-rate curve is��������������.

2.5.3 Model-Based Optimization

The analytical model can estimate the effects of both time-sharing and space-sharing using the
information from our memory monitors. Therefore, our monitoring scheme with the model can be
used for any optimization related to multi-tasking. For example, more accurate schedulers, which
consider both time-sharing and space-sharing can be developed. Using the model, we can also
partition the cache among concurrent processes or choose proper time quanta for them. In this
subsection, we provide some preliminary examples of these applications.
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Figure 8: The comparison of miss-rates for various schedules: the worst case, the best case, the
schedule based on the model, and the schedule decided by the algorithm in Section 2.3.

We applied the model to the same scheduling problem solved in Section 2.3. In this case,
however, the model evaluates each schedule based on miss-rate curves from the monitor and de-
cides the best schedule. Figure 8 illustrates the results. Although the improvement is small, the
model-based scheduler finds better schedules then the monitor-based scheme for small memories.

The model is also applied to partition the cache space among concurrent processes. Some part
of the cache is dedicated to each process and the rest is shared by all. Figure 9 shows the parti-
tioning results when 8 processes (bzip2, gcc, swim, mesa, vortex, vpr, twolf, iu) are
sharing the cache (32 KB, fully associative). The partition is updated every��� cache references.

16



The figure demonstrates that time-sharing can degrade cache performance for some mid-range time
quanta. Partitioning can eliminate the problem.
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Figure 9: The results of cache partitioning among concurrent processes.

2.6 Example 2 – Dynamic Paritioning

The analytical cache model estimates the overall cache miss-rate for a multi-processing system.
The cache size and the time quantum length for each job is known. The cache size is given by
the number of cache blocks, and the time quantum is given by the number of memory references.
Both are assumed to be constants (See Figure 10 (a)). In addition, associated with each job is its
miss-rate curve, i.e., the number of cache misses as a function of the cache size.

This section explains the development of the model in several steps. Heavy use is made of the
individual, isolated miss-rate curve (iimr). This curve is the miss-rate for a process as a function
of cache size assuming no other processes are running. There is much information that can be
gleaned from this equation. For example, we can compute the miss rate of a process as a function
of time (Section 2.6.2) from the miss-rate of a process as a function of space.

Time
Process 1 Process NProcess 2 ... Process 2Process 1 ...

T1 T2T1TNT2 ......

(b)

miss-rate curves (mi(x))

time quanta (Ti) 

cache size (C)

Cache Model overall miss-rate

(a)

Figure 10: (a) The overview of an analytical cache model. (b) Round-robin schedule.
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Observe that as a process executes, it either references an item in the cache, in which case its
footprint size remains the same, or it gets a cache miss thereby increasing its footprint size. In
other words, we know how much cache is allocated to a process as a function of time: from the
iimr curve, we compute the independent, isolated footprint as a function of time (iifp) (Section
2.6.3).

If one knows how much cache is allocated to a process when it begins executing its time
quantum and how much more cache it will need during the execution of that time quantum, we can
compute how much cache will be left for the next process that is about to begin its time quantum
execution. In other words, from the iifp curves of all the concurrent processes, we compute the
individual, dependent footprint (dfp) as a function of time (Section 2.6.4).

At each time step, we know how much cache is allocated to the running process (from dfp(t))
and we know the miss rate for that size (from iimr(S)) for the executing process and so we can get
the dependent miss rate as a function of time (dmr(t)) (Section 2.6.2).

Finally, integrating or summing the dmr(t) over time, gives the overall average miss rate for a
given cache size, given time quantum sizes, and a given set of concurrent processes (Section 2.6.5).

The following subsection gives an overview of our assumptions. The development of the cache
model is then presented, following the outline given above. Finally, this section ends with experi-
mental verification of the model.

2.6.1 Assumptions

The memory reference pattern of each process is assumed to be represented by a miss-rate curve
that is a function of the cache size. Moreover, this miss-rate curve is assumed not to change over
time. Although real applications do have dynamically changing memory reference patterns, our
results show that, in practice, an average miss-rate function works very well. For abrupt changes
in the reference pattern, multiple miss-rate curves can be used to estimate an overall miss-rate.

There is no shared address space among processes. This assumption is true for common cases
where each process has its own virtual address space and the shared memory space is negligible
compared to the entire memory space that is used by a process.

Finally, a round-robin scheduling policy with a fixed time quantum for each process is assumed
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(see Figure 10 (b)), an LRU replacement policy is used, and the cache is fully associative. Although
most real caches are set-associative, a model for fully-associative caches is very useful for under-
standing the effect of context switches because the model is simple. Moreover, cache partitioning
experiments demonstrate that the fully-associative model can also be applied to set-associative
caches in practice (Section 3). Elsewhere, we have extended the model to handle set-associative
caches [19]. A model assuming many other scheduling methods and replacement policies can be
similarly derived.

We make use of the following notations:

� the number of memory references from the beginning of a time quantum.

���� the number of cache blocks that belong to a process after� memory references.

���� the steady-state miss-rate for a process with cache size�.

� the number of memory references in a time quantum.

2.6.2 Cache Model

The goal is to predict the average miss-rate for a multiprocess machine with a given cache size and
set of processes.

Given the independent, isolated miss-rate of a process as a function of cache size, we compute
its miss-rate as a function of time. Let time� start at the beginning of a time quantum, not at the
beginning of execution. Since all time quanta for a process are identical by our assumptions, we
consider only one time quantum for each process.

Although the cache size is�, at certain times, it is possible that only part of the cache is filled
with the current process’ data (Figure 11 (a) shows a snapshot of a cache at time��). Therefore, the
effective cache size at time�� can be thought of as the amount of the current process’ data����� in
the cache at that time. The probability of a cache miss in the next memory reference is given by

��������� � ��������� (3)

Once we have���������, it is easy to estimate the miss-rate over time during that time quantum.
The number of misses for the process over a time quantum can be expressed as a simple integral,
Figure 11 (b), where the miss-rate is expressed as the number of misses divided by the number of
memory references.

miss-rate�
�

�

� �

�

���������� �
�

�

� �

�

��������� (4)

2.6.3 Footprint as a function of time

We now estimate����, the amount of a process’ data, i.e. its footprint, in a cache as a function of
time. Let us begin with the assumption that a process starts executing during a time quantum with
an empty cache in order to estimate cache performance for cases when a cache gets flushed for
every context switch. Virtual address caches without process ID are good examples of such a case.
We show later how to estimate���� when the cache is not empty at the start of a time quantum.
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Consider����� as the amount of the current process’ data at time� for an infinite size cache.
We assume that the process starts with an empty cache at time�. There are two possibilities for
����� at time���. If the ������� memory reference results in a cache miss, a new cache block is
brought into the cache. As a result, the amount of the process’s cache data increases by one block.
Otherwise, the amount of data remains the same. Therefore, the amount of the process’ data in the
cache at time� � � is given by

���� � �� �

�
����� � � �� � ���� reference misses

����� otherwise�
(5)

Since the probability for the������� memory reference to miss is�������� from Equation 3, the
expected value of��� � �� can be written by

�
���� � ��� � �
����� � ��� ���������

� ������ � �� ����������

� �
����� � � ����������

� �
������ � �
����������

(6)

Assuming that���� is convex5, we can use Jensen’s inequality [3] and rewrite the equation as a
function of�
������.

�
���� � ��� � �
������ � ���
�������� (7)

Usually, a miss-rate changes slowly. As a result, for a short interval such as from� to � � �,
���� can be approximated as a straight line. Since the equality in Jensen’s inequality holds if the
function is a straight line, we can approximate the amount of data at time� � � as

�
���� � ��� � �
������ � ���
�������� (8)

We can calculate the expectation of����� more accurately by calculating the probability for
every possible value at time� [19]. However, calculating a set of probabilities is computationally
expensive. Also, our experiments show that the above approximation closely matches simulation
results.

If we further approximate the amount of data����� to be the expected value�
������, �����
can be expressed with a differential equation:

���� � ��� ����� � ��������� (9)

which can be easily calculated in a recursive manner.
To obtain a closed form solution, we can rewrite the discrete form of the differential equation

9 to a continuous form:

���

��
� ������ (10)

5If a replacement policy is smart enough, the marginal gain of having one more cache block monotonically de-
creases as we increase the cache size.
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Figure 12: The snapshot of a cache after running Process� for time �.

Solving the differential equation by separating variables, the differential equation becomes

� �

� �����

�����

�

�����
���� (11)

We define a function���� as an integral of������, which means that�������� � ������, and
then����� can be written as a function of�:

����� � ����� � ��������� (12)

where������ represents the inverse function of����.
Finally, for a finite size cache, the amount of data in the cache is limited by the size of the cache

�. Therefore,�����, the amount of a process’ data starting from an empty cache, is written by

����� � ��� 
������ �� � ��� 
����� � ������ ��� (13)

2.6.4 Individual, Dependent Footprint as a function of time

We now compute the amount of a process’ data at time� when the cache is not flushed at a context
switch, i.e., the dependent case. To distinguish between the processes, a subscript� is used to
represent Process�. For example,����� represents the amount of Process�’s data at time�.

The estimation of����� is based on round-robin scheduling (See Figure 10 (b)) and the LRU
replacement policy. Process� runs for a fixed length time quantum��. For simplicity, processes
are assumed to be of infinite length so that there is no change in the scheduling. Also, the initial
startup transient from an empty cache is ignored since it is negligible compared to the steady state.

To estimate the amount of a process’ data at a given time, imagine the snapshot of a cache
after executing Process� for time � as shown in Figure 12. Note that time is� at the beginning
of the process’ time quantum. In the figure, the blocks on the left side show recently used data,
and blocks on the right side show old data.���� represents the data of Process�, and subscript

 specifies the most recent time quantum when the data are referenced. From the figure, we can
obtain����� once we know the size of all���� blocks.

21



The size of each block can be estimated using the��� ��� curve from Equation 13, which is the
amount of Process�’s data when the process starts with an empty cache. Since��� ��� can also be
thought of as the amount of data that are referenced from time� to time�, ��� ���� is the amount of
data that are referenced over one time quantum. Similarly, we can estimate the amount of data that
are referenced over
 recent time quanta to be��� �
 � ���. As a result, the size of Block���� can be
written as

���� �

�����
����

��� �� � �
 � �� � ���� ��� �� � �
 � �� � ���

if � is executing

��� �
 � ���� ��� ��
 � �� � ���

otherwise

(14)

where we assume that��� ��� � � if � � �.
����� is the sum of���� blocks that are inside the cache of size� in Figure 12. If we define ����

as the maximum integer value that satisfies the following inequality, then ���� � � represents how
many���� blocks are in the cache.

������
���

��
���

���� � ��� �� � � ����� �� � ��� �

��
����� ���

��� � ���� � ��� � � (15)

where� is the number of processes. From ���� and Figure 12, the estimated value of����� is

����� �

���������
��������

��� �� �  ���� � ��� if ��� �� �  ���� � ����
��

����� ���

��� � ���� � ��� � �

� �
��

����� ���

��� � ���� � ��� otherwise

(16)

Figure 13 illustrates the relation between��� ��� and�����. In the figure ���� is assumed to be
�. Unlike the cache flushing case, a process can start with some of its data left in the cache. The
amount of initial data����� is given by Equation 16. If the least recently used (LRU) data in a
cache does not belong to Process�, ����� increases the same as��� ���. However, if the LRU data
belongs to Process�, ����� does not increase on a cache miss since Process�’s block gets replaced.

Define����
���� 
� as the time when the
�� MRU block of Process� (����) becomes the LRU
part of a cache, and������� 
� as the time when���� gets completely replaced from the cache (See
Figure 12).����
���� 
� and������� 
� specify the flat segments in Figure 13 and can be estimated
from the following equations that are based on Equation 14.

��� �����
���� 
� � �
 � �� � ��� �
��

������

����
 � �� � �� � �� (17)

��� �������� 
� � �
 � �� � ��� �
��

������

����
 � �� � �� � �� (18)
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Figure 13: The relation between��� ��� and�����. ����� is the amount of Process�’s data in the
cache when a time quantum starts.

����
����  ���� � �� would be zero if Equation 17 is satisfied when����
����  ���� � �� is negative,
which means that the� ���  ����� �� block is already the LRU part of the cache at the beginning of
a time quantum.

2.6.5 Overall Miss-rate

This section presents the overall miss-rate calculation. When a cache uses virtual address tags and
gets flushed for every context switch, each process starts a time quantum with an empty cache. In
this case, the miss-rate of a process can be estimated from the results of Section 2.6.2 and 2.6.3.
From Equation 4 and 13, the miss-rate for Process� can be written by

miss-rate�� �
�

��

� ��

�

������ 
���
� �� � ������� ������ (19)

If a cache uses physical address tags or has a process’ ID with virtual address tags, it does
not have to be flushed at a context switch. In this case, the amount of data����� is estimated in
Section 2.6.4. The miss-rate for Process� can be written by

miss-rate� �
�

��

� ��

�

����������� (20)

where����� is given by Equation 16.
For actual calculation of the miss-rate,����
���� 
� and������� 
� from Equation 17 and 18 can

be used. Since����
���� 
� and ������� 
� specify the flat segments in Figure 13, the miss-rate of
Process� can be rewritten by

miss-rate� �
�

��
�

� � ��

�

������ 
���
� �� � ����������� �����

�

��������
����

����
�
� �����
���� 
� � �
 � �� � ����

� ���� 
������� 
�� ���� ����
���� 
���

(21)
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Figure 14: The result of the cache model for cache flushing cases. (a)vpr. (b)vortex. (c)gcc.
(d) bzip2.
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where�� is the minimum integer value that satisfies����
���� ��� � ��. � �
� is the time that Process�

actually grows.

� �
� � �� �

��������
����

���� 
������� 
�� ���� ����
���� 
��� (22)

As shown above, calculating a miss-rate could be complicated if we do not flush a cache at
a context switch. If we assume that the executing process’ data left in a cache is all in the most
recently used part of the cache, we can use the equation for estimating the amount of data starting
with an empty cache. Therefore, the calculation can be much simplified as follows,

miss-rate� �
�

��

� ��

�

������ 
���
� �� � ����������� ����� (23)

where����� is estimated from Equation 16. The effect of this approximation is evaluated in the
experiment section (cf. Section 2.7).

Once we calculate the miss-rate of each process, the overall miss-rate is straightforwardly
calculated from those miss-rates.

Overall miss-rate�

��

��� miss-rate� � ����

��� ��
(24)

2.7 Experimental Verification

Our cache model can be validated by comparing estimated miss-rate predictions with simulation
results. Several combinations of benchmarks are modeled and simulated for various time quanta.
First, we simulate cases when a cache gets flushed at every context switch, and compare the results
with the model’s estimation. Cases without cache flushing are also tested. For the cases without
cache flushing, both the complete model (Equation 21) and the approximation (Equation 23) are
used to estimate the overall miss-rate. Based on the simulation results, the error caused by the
approximation is discussed.

2.7.1 Cache Flushing Case

The results of the cache model and simulations are shown in Figure 14 in cases when a process
starts its time quantum with an empty cache. Four benchmarks from SPEC CPU2000 [32], which
arevpr, vortex, gcc andbzip2, are tested. The cache is a 32-KB fully-associative cache with
32-Byte blocks. The miss-rate of a process is plotted as a function of the length of a time quantum,
and shows a good agreement between the model’s estimation and the simulation result.

As inputs to the cache model, the average miss-rate of each process has been obtained from
simulations. Each process has been simulated for�	 million memory references, and the miss-
rates of the process for various cache size have been recorded. The simulation results were also
obtained by simulating benchmarks for�	 million memory references with flushing a cache every
� memory references. As the result shows, the average miss-rate works very well.
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Figure 15: The result of the cache model when two processes (vpr, vortex) are sharing a cache
(32 KB fully-associative). (a) the overall miss-rate. (b) the initial amount of data�����.
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Figure 16: The overall miss-rate when four processes (vpr, vortex, gcc, bzip2) are sharing a
cache (32 KB, fully-associative).

2.7.2 General Case

Figure 15 shows the result of the cache model when two processes are sharing a cache. The
two benchmarks arevpr andvortex from SPEC CPU2000, and the cache is a 32-KB fully-
associative cache with 32-Byte blocks. The overall miss-rates are shown in Figure 15 (a). As
shown in the figure, the miss-rate estimated by the model shows a good agreement with the results
of the simulations.

The figure also shows an interesting fact that a certain range of time quanta could be very
problematic for cache performance. For short time quanta, the overall miss-rate is relatively small.
For very long time quanta, context switches do not matter since a process spends most of its time in
the steady state. However, medium time quanta could severely degrade cache miss-rates as shown
in the figure. This problem occurs when a time quantum is long enough to pollute the cache but
not long enough to compensate for the misses caused by context switches. The problem becomes
clear in Figure 15 (b). The figure shows the amount of data left in the cache at the beginning of
a time quantum. Comparing Figure 15 (a) and (b), we can see that the problem occurs when the
initial amount of data rapidly decreases.

The error caused by our approximation (Equation 23) method can be seen in Figure 15. In
the approximation, we assume that the data left in the cache at the beginning of a time quantum
are all in the MRU region of the cache. In reality, however, the data left in the cache could be
the LRU cache blocks and get replaced before other process’ blocks in the cache, although the
current process’s data are likely to be accessed in the time quantum. As a result, the approximated
miss-rate is lower than the simulation result when the initial amount of data is not zero.

A four-process case is also tested in Figure 16. Two more benchmarks,gcc andbzip2,
from SPEC CPU2000 [32] are added tovpr andvortex, and the same cache configuration is
used as the two process case. The figure also shows a very close agreement between the miss-rate
estimated by the cache model and the miss-rate from simulations. The problematic time quanta
and the effect of the approximation have changed. Since there are more processes polluting the
cache as compared to the two process case, a process experiences an empty cache in shorter time
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Figure 17: The implementation of on-line cache partitioning.

quanta. As a result, the problematic time quanta become shorter. On the other hand, the effect of
the approximation is less harmful in this case. This is because the error in one process’ miss-rate
becomes less important as we have more processes.

3 Cache Partitioning

This section shows how the analytical cache model can be used to dynamically partition the cache.
A partitioned cache allocates cache space to particular processes. This space is dedicated to the pro-
cess and cannot be used to satisfy cache misses by other processes. Using trace-driven simulations,
we compare partitioning with the normal LRU. The partitioning is based on the fully-associative
cache model. However, simulation results demonstrate that this implementation works for both
fully-associative caches and set-associative caches.

3.1 Recording Memory Reference Patterns

The miss-rate curves for each process are generated off-line. We record the miss-rate curve for
each process to represent its memory reference pattern. For various cache sizes, a single process
cache simulator is applied to each process. This information can be reused for any combination of
processes as long as the cache configuration is the same6.

To incorporate the dynamically changing behavior of a process, a set of miss-rate curves, one
for each time period, are produced. At run-time, the miss-rate curve is mapped to the appropriate
time quantum.

3.2 The Partitioning Scheme

The overall flow of the partitioning scheme can be viewed as a set of four modules: off-line record-
ing, scheduler information, allocation, and replacement (Figure 17). The scheduler provides the
partition module with the set of executing processes and their start/end times. The partition module

6Note that for our fully-associative model, only the cache block size matters
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Figure 18: The characteristics of the benchmarks. (a) The change of a miss-rate over time. (b) The
miss-rate as a function of the cache size.
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uses the miss-rate information for the processes to calculate cache partitions at the end of each time
quantum. Finally, the replacement unit maps these partitions to the appropriate parts of the cache.

The partition module decides the number of cache blocks that should be dedicated to a process
(��). The�� most recently used cache blocks of Process� are kept in the cache over other process’
time quanta, and Process� starts its time quantum with those cache blocks in the cache. During
its own time quantum, Process� can use all cache blocks that are not reserved for other processes
(� � � �

��

����� �����).
In addition to LRU information, our replacement decision depends on the number of cache

blocks that currently belong to each process (!�), that is, the number of cache lines in the cache
that currently contain memory of that process. The LRU cache block of an active process (�) is
chosen if its actually allocation (!�) is larger than or equal to the desired one (�� � � � !�).
Otherwise, the LRU cache block of a dormant overallocated process is chosen. For set-associative
caches, there may be no cache block of the desired process in the set. In this case, the LRU cache
block of the set is replaced.

For set-associative caches, the fully-associative replacement policy may result in replacing
recently used data to keep useless data. Imagine the case when a process starts to heavily access
two or more addresses that happen to be mapped to the same set. If the process already has many
cache blocks in other sets, our partitioning will allocate only a few cache blocks in the accessed set
for the process, causing lots of conflict misses. To solve this problem, we can use better mapping
functions [22, 6] or a victim cache [8].

When a Process� first starts,�� is set to zero since there is no cache block that belongs to the
process. At the end of Process�’s time quantum, the partition module updates the information such
as the miss-rate curve(�����) and the time quantum(��). If there is any change,�� is also updated
based on the cache model.

A cache partition specifies the amount of data in the cache at the beginning of a process’ time
quantum (��), and the maximum cache space the process can use (� �

��

����� �����). Therefore,
the number of misses for a process over one time quantum can be estimated from Equation 23:

miss� �
� ��

�

������ 
���
� �� � �������� � �

��
����� ���

������ (25)

where� is cache size, and� is the number of processes sharing the cache.
The new value of�� is the integer, in the range
�� !��, that minimizes the total number of

misses that is given by the following quantity:

��
��

� ��

�

����� 
���
 �� � ������ � �

��
����� ��

������� (26)

3.3 Experimental Verification

The case of eight processes sharing a 32-KB cache is simulated to evaluate model-based parti-
tioning. Seven benchmarks (bzip2, gcc, swim, mesa, vortex, vpr, twolf) are from SPEC
CPU2000 [32], and one (the image understanding program (iu)) is from a data intensive systems
benchmark suite [38]. The overall miss-rate with partitioning is compared to the miss-rate only
using the normal LRU replacement policy.
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The simulations are carried out for fifty million memory references for each time quantum.
Processes are scheduled in a round-robin fashion with the fixed number of memory references per
time quantum. Also, the number of memory references per time quantum is assumed to be the
same for the all eight processes. Finally, two record cycles (� ), of ten million and one hundred
thousand memory references, respectively, are used for the model-based partitioning. The record
cycle represents how often the miss-rate curve is recorded for the off-line profiling. Therefore, a
shorter record cycle implies more detailed information about a process’ memory reference pattern.

The characteristics of the benchmarks are illustrated in Figure 18. Figure 18 (a) shows the
change of a miss-rate over time. The x-axis represents simulation time. The y-axis represents the
average miss-rate over one million memory references at a given time. As shown in the figure,
bzip2, gcc, swim andiu show abrupt changes in their miss-rate, whereas other benchmarks
have very uniform miss-rate characteristics over time. Figure 18 (b) illustrates the miss-rate as
a function of the cache size. For a 32-KB fully-associative cache, benchmarks show miss-rates
between 1% and 5%.

3.3.1 Fully-Associative Result

The results of cache partitioning for a fully-associative cache are shown in Figure 19. In Fig-
ure 19 (a), the miss-rates are averaged over 50 million memory references and shown for various
time quanta. As discussed in the cache model, the normal LRU replacement policy is problematic
for a certain range of time quanta. In this case, the overall miss-rate increases dramatically for
time quanta between one thousand and ten thousand memory references. For this problematic re-
gion, the model-based partitioning improves the cache miss-rate by lowering it from���% to��%,
which is about a 25% improvement. For short time quanta, the relative improvement is about 7%.
For very long time quanta, the model-based partitioning shows the exact same result as the normal
LRU replacement policy. In general, it is shown by the figure that the model-based partitioning
always performs at least as well as or better than the normal LRU replacement policy. Also, the
partitioning with a short record cycle performs better than the partitioning with a long record cycle.

In our example of a 32-KB cache with eight processes (Figure 19), the problematic time quanta
are in the order of a thousand memory references, which is very short for modern microprocessors.
As a result, only systems with very fast context switching, such as simultaneous multi-threading
machines [47, 36, 30], can be improved for this cache size and workload. However, longer time
quanta become problematic if a cache is larger. Therefore, conventional time-shared systems with
very high clock frequency can also be improved by the same technique if a cache is large.

Figure 19 (b) shows the change of a miss-rate over time rather than an average miss-rate over
the entire simulation. It is clear from the figure how the short record cycle helps partitioning. In
the figure, the model-based partitioning with the long record cycle (� � ���) performs worse than
LRU at the beginning of a simulation, even though it outperforms the normal LRU replacement
policy overall. This is because the model-based partitioning has only one average miss-rate curve
for a process. As shown in Figure 18, some benchmarks such asbzip2 andgcc have a very
different miss-rate at the beginning. Therefore, the average miss-rate curves for those benchmarks
do not work at the beginning of the simulation, which results in worse performance than the normal
LRU replacement policy. The model-based partitioning with the short record cycle (� � ���), on
the other hand, always outperforms the normal LRU replacement policy. In this case, the model
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Figure 19: The results of the model-based cache partitioning for a fully-associative cache when
eight processes (bzip2, gcc, swim, mesa, vortex, vpr, twolf, iu) are sharing the cache
(32 KB, fully associative). (a) the average miss-rate for various time quanta. (b) the change of the
miss-rate over time with ten memory references per time quantum.
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Figure 20: The results of the model-based cache partitioning for a set-associative cache when eight
processes (bzip2, gcc, swim, mesa, vortex, vpr, twolf, iu) are sharing the cache (32 KB,
8-way associative).

has correct miss-rate curves for all the time quanta, and partitions the cache properly even for the
beginning of processes.

3.3.2 Set-Associative Result

The result of cache partitioning for a set-associative cache is shown in Figure 20. The same set
of benchmarks are simulated with a 32-KB 8-way set-associative cache, and the same miss-rate
curves generated for a 32-KB fully-associative cache are used. In this case, a 16 entry victim cache
is added. In the figure, the model-based partitioning improves the miss-rate about 4% for short time
quanta and up to 15% for mid-range time quanta. The figure demonstrates that the model-based
partitioning mechanism works reasonably well for set-associative caches.

4 Compressed Caches

One obvious way to increase the effective on-chip cache size is to use a dictionary-based com-
pression scheme, however, since many values in the cache cannot be compressed naive implemen-
tations yield poor results. Our main innovation is to dynamically partition the cache in order to
accommodate the various compression characteristics while keeping fast and simple access to the
cache items.

Compression is a good match for caches since there is no assumption that a particular memory
location will be found in the cache. Only performance suffers if an address is not found in the
cache.

As main memory moves further away from the processor, it makes sense to spend a few extra
cycles to avoid off-chip traversal costs. Our Partitioned Compressed Cache (PCC) algorithm is
applied to the data values in the L2 cache where the decompress overheads are tolerable and the
large size provides more opportunity for compression. PCC uses dictionary-based rather than
sliding-window compression, to allow selective decompression of any cache line. PCC is described
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and evaluated via three main issues: the compression scheme, the cache management scheme, and
an evaluation mechanism.

The compression scheme of PCC is dictionary-based in which entries in the dictionary contain
common strings of up to the size of a cache line. Cache lines can thus be compressed and decom-
pressed on a line by line basis. PCC uses a “clock-scheme” that cycles over the compressed entries
in the cache marking the corresponding dictionary entries as active while another “clock-scheme”
cycles over the dictionary entries clearing out any inactive entries.

The cache entries can be compressed or not, and assuming that a cache line could be com-
pressed down to��� of its uncompressed size, we allow each cache set to contain anywhere from
� to �� entries. No matter what,�� address tags and LRU bits are maintained even though only
� entries might be present in the set. When a new cache line is brought in or part of a cache line
value is updated, PCC attempts to compress the line. A line is considered to be compressed if its
compressed size is below a fixed threshold, e.g., a threshold of 16 bytes for a 32 byte cache line.
Then, enough of the least recently used items are evicted from the cache so as to make room for the
new item. In this way, the number of entries in a cache set varies depending on how compressible
are the entries.

We use simulation but develop a new metric to evaluate performance. Reporting the number
of compressible cache lines is not very helpful nor do cache hit ratios tell the whole story since
they are very sensitive to the relative sizes of working set and the cache size. We use a metric that
measures the effective cache size due to compression. That is, how much larger would a traditional
cache need to be in order to achieve the same cache hit rates.

Of course the ultimate metric is performance, i.e., the reduction of the running time of the
application. In particular, since we are targeting the memory system, the reduction in the average
amount of time required to access data is of interest. For fairness, this comparison should take
into account all area overheads and clock cycle penalties associated with compression. We have
significant improvements in the time required to access data using a PCC.

After reviewing related work, the rest of the paper follows the three main issues: compression,
cache management, and evaluation.

4.1 Related Work

While compression has been used in a variety of applications, it has yet to be researched exten-
sively in the area of processor cache. Previous research includes compressing bus traffic to use
narrower buses, compressing code for embedded systems to reduce memory requirements and
power consumption, compressing file systems to save disk storage, and compressing virtual and
main memory to reduce page faults.

Citron et al. [56] found an effective way to compact data and addresses to fit 32-bit values over
a 16-bit bus, while Thumb [66, 61] and others [71, 64, 65] apply compression to instruction sets
and binary executables. Douglis [58] proposed using a fast compression scheme [69] in a main
memory system partition and shows several-fold speed improvement in some cases and substantial
performance loss in others. Kjelso et. al [63] and Wilson et al. [70] consider an additional com-
pressed level of memory hierarchy and found up to an order of magnitude speedup. IBM’s MXT
technology [67] uses the scheme developed by Benveniste et al. [52] with 256 byte sub-blocks,
a 1KB compression granularity, combining of partially filled blocks, along with the LZ77-like
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parallel compression with shared dictionaries compression method.
Yang et al. [72, 73] explored compressing frequently occurring data values in focusing on

direct-mapped L1 configurations and found that a large portion of cache data is made of only a few
values, which they name Frequent Values. By storing data as small pointers to Frequent Values plus
the remaining data, compression can be achieved. They propose a scheme where a cache line is
compressed if at least half of its values are frequent values. They present results for direct-mapped
L1 which with compression can become a 2-way associative cache with twice the capacity.

PCC is similar to Douglis’s Compression Cache in its use of partitions to separate compressed
and uncompressed data. A major difference is that Douglis’s Compression Cache serves data to the
higher level in the hierarchy only from the uncompressed partition, and so if the data requested is
in the compressed partition, it is first moved to the uncompressed partition. The scheme developed
by Benveniste et al. and the Frequent Value cache developed by Yang et al. serve data from both
compressed and uncompressed representations as the PCC does, but both lack dynamic, adaptive
partitioning.

4.2 The PCC Compression Algorithm

The dictionary compression scheme of PCC is based on the common Lempel-Ziv-Welch (LZW)
compression technique [68]. When an entry is first placed in the cache or when an entry is modi-
fied, the dictionary is used to compress the cache line. The dictionary values are purged of useless
entries by using a “clock-like” scheme over the compressed cache to mark all useful dictionary
entries.

With LZW compression, the raw input stream data is compressed into another, shorter output
stream of compressed symbols. Usually, the size of each uncompressed symbol, say of� bits, is
smaller than the size of each compressed symbol, say of� bits. The dictionary initially consists of
one entry for each uncompressed symbol. See Figure 21 for an example.

Compression works as follows. Find the longest prefix of the input stream that is in the dic-
tionary and output the compressed symbol that corresponds to this dictionary entry. Extend the
prefix string by the next input symbol and add it to the dictionary. The dictionary may either stop
changing or it may be cleared of all entries when it becomes full. The prefix is removed from the
input stream and the process continues.

Unlike LZW, PCC compresses only a cache line’s worth of data at a time. A space-efficient
dictionary representation maintains a table of�� entries, each of which contains two values: a
compressed symbol that points to some other dictionary entry and an uncompressed symbol, for
a total of� � � bits per entry. The uncompressed symbols need not be explicitly stored in the
dictionary as the first�� values represent themselves. Given a table entry, the corresponding string
is the concatenation of the second value to the end of the string pointed to by the first value.

To compress a cache line, find the longest matching string, then output its dictionary symbol.
Repeat until the entire line has been compressed. Decompression is much faster than compression.
Each compressed symbol indexes into the dictionary to provide an uncompressed string. For a line
containing�� compressed symbols,���� � �� table lookups are needed for decompression. The
decompression latency can be improved by increasing the dictionary size and by parallelizing the
table lookups. Naturally, increasing the compressed symbol size� while keeping the uncompressed
symbol size� constant will increase the size of the associated table and enable more strings to be
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Figure 21: The space-efficient dictionary stores only one uncompressed symbol per entry, while the
reduced-latency dictionary stores the entire string. The table at the lower half of the figure shows the order
in which entries are added to the initially empty dictionaries.
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Figure 22: Compression and Decompression Logic: note that the design shown here does not
include parallel compression or decompression, and therefore exhibits longer latencies for larger
compression partition line sizes.� represents the number of uncompressed symbols stored in each
dictionary entry.

stored.
One way to purge dictionary entries is by maintaining reference counts for each entry updated

whenever a compressed cache line is evicted or replaced. PCC uses a more efficient method to
purge entries sweeping through the contents of the cache slowly, using a clock scheme with two
sets of flags. Each of the two sets has one flag per dictionary entry, and the status of the flag
corresponds to whether or not the dictionary entry is used in the cache. If there is a flag in either
set, it is assumed that the entry is being referenced. Compression or decompression also cause
the appropriate dictionary entries flag to be set. A second process sweeps through the dictionary
purging entries.

Compression time can be reduced dramatically by searching through only a strict subset of
the entire dictionary for each uncompressed symbol of the input. A hash of the input is used
to determine which entries to examine. If the dictionary is stored in multiple banks of memory,
choosing hash functions such that entries are picked to be in separate banks allows these lookups
to be done in parallel. Alternatively, content addressable memory (CAM) can be used to search all
entries at the same time, reducing the number of dictionary accesses to the number of repetitions
needed, or���� accesses.

Decompression and compression logic is illustrated in Figure 22.
Decompression and compression can each be done in parallel to reduce their latency. To do

so effectively, a method of performing multiple dictionary lookups in parallel is needed. One
solution is to increase the number of ports to the dictionary. Another possibility is to keep several
dictionaries, each with the same information. This provides a reduction in latency at the expense of
the increased area needed for each additional dictionary. While decompressing, there are multiple
compressed symbols which need to be decompressed. Since these symbols are independent of one
another, they can be decompressed in parallel.

In practice, parallelizing the decompression process may not actually reduce latency signifi-
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Table 5: Replacement Algorithm

cantly. The experiments in this work show that performance is best when dictionary sizes are such
that only one or two lookups are needed per compressed symbol. This is largely due to the low cost
of increasing dictionary size in comparison to the benefits of decreasing the number of lookups.

4.3 PCC Management

Since not all data values are compressible nor are they all accessed at the same rate, an adaptive
scheme can make the best use of the limited resources. An examination of the data values oc-
curring in six benchmarks clearly show this variability, see Figure 23. For all unique cache lines
accessed during the execution, the figure shows a histogram of the number of data values as a
function of their compressibility. What is important to note is the variability between the bench-
marks. Moreover, the overlaying curves show the usefulness of data; that is how often the data is
referenced.

It is possible to statically partition the cache into compressed and uncompressed sections. Ex-
periments reported  elsewhere   show that each  benchmark  requires a different partitioning to get
performance improvements. Not only do data values differ in how much they can be compressed
and how often they are accessed, cache sets have different access patterns. Some sets are “hot”
experiencing a large number of accesses and some sets experience “thrashing” indicating they do
not have enough capacity .

PCC uses the same basic storage allocation scheme of a traditional cache, i.e., a set of address
tags and a set of data values. The number of address tags (and comparators) is fixed, but the number
of cache lines in the set varies. For purposes of exposition, assume that two compressed entries
require about the same number of bits as a single uncompressed entry; modifications to other ratios
are straightforward but require more complicated circuitry. Let� be the number of normal entries,
that is the data store for a set is�� bytes. This space could store�� compressed entries. In general
�� � � � �� entries can be stored where� entries are compressed. Associated with each 32 byte
field is one bit indicating whether there is one uncompressed or two compressed items present.
The cache has�� tags and maintains LRU information on all�� entries, even though there may
only be� entries actually in the cache.

On a cache hit, the cache line is either fetched directly from the data table or it must first
be decompressed. Decompression is done via the dictionary as outlined in the previous section.
Since compressed items enable a larger number of items to be stored in the cache, the overhead in
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Figure 23: The histograms indicate the amount of data available at different levels of compress-
ibility. The x-axis gives the size of the compressed line in bytes. The y-axis gives the amount of
data in kilobytes, covering all unique memory addresses accessed during the simulation (an infinite
sized cache). The top two histograms show that most data values are highly compressible, while
the bottom-most right histogram shows that many data values would require more than 39 bytes
to store a 32 byte cache line if compressed. The overlaying curves show the usefulness of data
at different levels of compressibility. The y-axis gives the probability that a hit is on a particular
cache line in the corresponding partition. This y value is equivalent to taking the total number of
hits to the corresponding partition and dividing by the number of cache lines in that partition as
given by the bars.
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Figure 24: A sample configuration in which cache lines are assumed to be compressible to 1/2
their size, e.g. a 32 byte line compressed requires only 16 bytes. A cache set has tags and LRU
bits for 16 ways, but as few as 8 or as many as 16 actually entries.

decompressing is offset by savings of not having to go off-chip to fetch the line from main memory.

4.3.1 The replacement strategy

The interesting situation happens during a cache miss, which we note in passing, is a rare event.
When a cache miss occurs, the newly retrieved item will replace either the LRU item except some-
times it may replace two items. When the new cache line is fetched from main memory, an attempt
is made to compress it. If the size of the compressed line is below a threshold, e.g., 16 bytes, then
it is consideredcompressibleotherwise it isincompressible. It must then be stored into the data
table.
PPC Replacement Scheme:There are several cases to consider when inserting the cache line
into the data table, see Table 5. The easiest case is when the new item and the LRU item have the
same status – either both compressible or both incompressible – then the new item simply replaces
the evicted LRU item. When the new item is compressible and the LRU item isn’t, then the LRU
item is evicted and its storage is converted to two compressible entries, one that is left empty (and
marked as LRU). The case when the new item is incompressible has two subcases. If the two most
LRU items are compressible, then they are both evicted and their space is converted to a normal
entry. Finally, if the second most LRU item is incompressible, then it is the only one that is evicted
and replaced; the LRU item remains in the cache.

The most work is required when the two least recently used items are both compressed and
must be merged to form a normal entry. This might require moving an item if they do not form
an even-odd pair. For example, if the compressed LRU� and LRU� are (LRU�, !) and (LRU�,
" ), i.e., they are not an even-odd pair, if we wish to insert a new uncompressible block� into the
cache, we will end up with� and (!, " ) in the set.

Note that this movement is only needed to be done during certain (not all) cache misses, a
rare event, and could overlap the time to fetch the missed item. Also note that updating of the
value of a part of a cache line can change its compressibility as well. Conceptually, updating can
be considered to be an invalidation of the old entry and an insertion of a new entry. They above
actions thus apply to the insertion.

In terms of cache hits, PCC always performs at least as well as a comparable standard cache.
This is easy to see when one realizes that the LRU element in any set of a PCC cache was used no
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more recently than the LRU element in the corresponding set of a standard cache. The PCC cache
is a superset of the traditional cache.

4.3.2 A latency-sensitive replacement strategy

While the above replacement strategy works well in improving hit rates, it does not account for the
fact that a cache hit to a compressed item has longer latency than a hit to an uncompressed item.
It is possible to modify the strategy in a way that may slightly decrease the hit ratio while also
significantly decreasing the number of times an item is decompressed.

In a level one (L1) cache, the most recently used item in a cache set usually experiences the
most accesses. The second most recently used item in the set experiences the second most accesses,
and so on. When the L1 cache is too small for the application, the level two (L2) cache behaves in
a similar fashion. In other cases, accesses to the L2 cache are fairly random as to which element is
accessed in a set. In such situations, it is helpful if the number of items in the set is large. In other
words, the behavior of an L2 cache differs among applications and the behavior of each set in the
L2 cache differs.

When the L2 behaves like an L1 cache, the MRU item will be frequently accessed. In such a
case, it would be better if that item was stored in its uncompressed form. On the other hand, when
items are accessed uniformly, it is better for the items to be compressed.

We modify the replacement scheme as follows.
Latency-sensitive Replacement Scheme:Whenever an MRU item is accessed and it is com-
pressed, then it is replaced in the cache in its uncompressed form. This may cause the LRU item to
be evicted. Whenever an LRU item is to be evicted from the cache and it is not compressed, PCC
attempts to keep the item in the cache by compressing two other items in the set. The items of set
are scanned from LRU to MRU order and for each item that is not compressed, an attempt is made
to compress it. If two items are found, then they are compressed and the LRU item remains in the
cache.

4.4 The Performance of PCC

We use simulation to evaluate the effectiveness of the PCC. Simulation is done using a hand-written
cache simulator whose input consists of a trace of memory accesses. A trace of memory accesses is
generated by the Simplescalar simulator[53], which has been modified to dump a trace of memory
accesses in a PDATS[60] formatted file. Applications are compiled with gcc or F90 with full
optimization for the Alpha instruction set and then simulated with Simplescalar. The benchmark
applications are from the SPEC2000 benchmark suite and simulated for 30 to 50 million memory
references.

The L1 cache is 16KB, 4 way set associative, with a 32 byte line size, and uses write-back.
The L2 cache is simulated with varying size and associativity, with a 32 byte line size, and write-
allocate (also known as fetch on write). We assume an uncompressed input symbol size� of 8 bits,
and a compressed output symbol size� of 12 bits. The dictionary stores 16 uncompressed symbols
per entry, making the size of the dictionary��� � ����� 	 �� � ��, which evaluates to 537,600 bits,
or 67,200 bytes.
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4.4.1 Metrics

The common metric for the performance of a compression algorithm is to compare the sizes of the
compressed and uncompressed data, i.e., the compression ratio [51], and for a cache is the miss
rate reduction metric. However, the two configurations are not easily comparable as the partitioned
cache uses more tags and comparators per area while at the same time using much less space to
store data than the traditional cache.

We introduce the interpolated miss rate equivalent caches (IMRECs) metric that indicates the
effective size of the cache. That is, how large must a standard cache be to have the same perfor-
mance of a PCC cache. We wish to maximize the IMREC value; a value above 1 means that the
PCC cache behaves like a larger-sized standard cache. For a given PCC configuration and miss
rate, there is usually no naturally corresponding cache size with the same miss rate. Consequently,
we interpolate linearly to calculate a fractional cache size. Our sample points are chosen by picking
the size of a cache way, and then increasing the number of ways.

The size of a standard cache is the total number of cache lines multiplied by the cache line
size. The size of a PCC cache includes the size of the dictionary, the additional address tag bits
and additional status bits.

Let ����� be the miss rate of a j-way standard cache and���� the size of cache�, the IMREC
ratio is as follows:

IMREC ratio� ����� �
�����������������������������

�������������

when����� #� ������ and������� � ������

Another metric is the miss rate reduction (MRR), or the percent reduction in miss rate. But
once again, we linearly interpolate to get the miss rate for an equivalently sized standard cache.

Percent Miss Rate Reduction�
�

�$�����
�������������������������������

�������������

	

 ����

when����� �� ������ and������� # ������

It is important to understand what can cause large swings in IMREC ratio and MRR. Figure
25 shows typical curves of miss rate versus cache size. Miss rate curves typically have a prominent
knee where miss rate decreases rapidly until the knee and then very slowly afterwards. The graph
to the right shows that to the right of the knee, a small increase in MRR corresponds to a large
increase in IMREC ratio. The graph to the left shows that to the left of the knee, a small increase
in IMREC ratio corresponds to a large increase in MRR. While it may seem that the small miss
rate improvements gained when to the right of the knee are unimportant, applications operating to
the left of the knee are likely to be performing so badly that the issue of whether to use a PCC is
not a primary concern. Thus most situations of interest occur to the right of the knee, where large
IMREC ratios indicate that a PCC provides the same performance gains as a large cache but with
much less hardware.

In our simulations, we account for the latency incurred by the decompression.
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Figure 25: To the left of the knee, small increases in IMREC ratio correspond to large increases in
MRR. To the right of the knee, small increases in MRR correspond to large increases in IMREC
ratio.
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Figure 26: We plot theart andequake IMREC ratios over time so as to know how long to
simulate before recording results.
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Figure 27: The IMREC values for five benchmarks show that PCC clearly improves the perfor-
mance. PCC can sometimes perform like a cache 80 percent larger. It never performs worse that
the same sized standard cache.

Let %� be the number of hits to L1,&� be the number of hits in PCC to items that are not
compressed,&� be the number of hits to items that are compressed, and��� be the number of L2
misses. Then, the time to access memory with a PCC is

���� � ��%� � ��&� � �	&� � �
���

For a standard cache, the number of L1 hits are the same, but the number of L2 hits and L2
misses differ. The time to access memory with a standard cache is:

���� � ��%� � ��%� � �
���

where��� ��� �	� '���
 are the times to access L1, L2, L2 compressed, and DRAM.
We define theaverageL2 access time quotientas,
��(��� � � ��

� ���

Finally we must make sure that our simulations have run for long enough that the values pre-
sented are representative of the benchmark. We do this by plotting IMREC ratios over time. While
some benchmarks likemcf clearly reach steady state quickly, others, likeequake, have more
varied behavior and take longer, as shown in Figure 26.

4.4.2 Results of the simulations

Although we ran many simulations over the large space of configurations, we present only one
slice. Varying the dictionary size, the compressibility threshold (e.g. requiring a line to be 8 bytes
or less before we consider it to be compressible), and many others result in too many graphs. We
present what we believe to be a reasonable configuration that gives fairly good results.

The IMREC values for five benchmarks, Figure 27, show a performance improvment. PCC
can sometimes perform like a cache 80 percent larger. It never performs worse that the same
sized standard cache. Note that since IMREC takes into account the extra storage allocated to
the dictionary, when PCC contains no compressed values, it will still be considered inferior to an
equally sized cache.

When we take into account the latency to decompress a cache line, the results are less impres-
sive, sometimes showing that PCC is slower than a standard cache, Figure 28.
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Figure 28: The ATQ values for five benchmarks show that even when the latency of decompressing
cache items, PCC still can improve the performance although not for all applications. The graphs
assume 100 or 500 cycle time to main memory.
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Figure 29: The IMREC values for the modified PCC replacement strategy that tries to keep the
MRU item decompressed.
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Figure 30: The ATQ values corresponding to Figure 29.
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The latency-aware replacement scheme indeed reduces the overhead of decompressing without
significantly reducing the number of hits. Figure 29 shows that the performance in terms of hits
does  not  change  very  much,  but  the  latencies  numbers  are  much  better,.  Note  that  access
time quotients just compare the times and since the standard cache may access memory more
frequently, PCC can do much better.

4.5 Conclusion

Compression can be added to caches to improve capacity, but creates problems of replacement
strategy and fragmentation; these problems can be solved using partitioning. A dictionary-based
compression scheme allows for reasonable compression and decompression latencies and com-
pression ratios. Keeping the data in the dictionary from becoming stale can be avoided with a
clock scheme.

The performance gains of a PCC over a standard cache of equivalent size can be attributed to
two factors. A PCC potentially stores more data than a standard cache, which can reduce capacity
misses. In addition, a PCC has more associativity than a standard cache of equivalent size, which
can reduce conflict misses.

Various techniques can be used to reduce the latency involved in the compression and decom-
pression process. Searching only part of the dictionary during compression, using multiple banks
or CAMs to examine multiple dictionary entries simultaneously, and compressing a cache line
starting at different points in parallel can reduce compression latency. Decompression latency can
be reduced by storing more symbols per dictionary entry and decompressing multiple symbols in
parallel. There are many different compression schemes some of which may perform better or be
easier to implement in hardware.

The benefits of having a partitioned compressed cache have not yet been fully explored. For
example, CRCs of the cache data can be done for only a small incremental cost, an idea which is
proposed also in [67]. The partitioning based on compressibility may also naturally improve the
performance of a processor running multiple jobs, some of which are streaming applications. The
streaming data is likely to be hard to compress, and can therefore automatically be placed into its
own partition separate from non-streaming data.
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